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We present a new vorticity–velocity formulation and implementation for the un-
steady three-dimensional Navier–Stokes equations, based on a penalty method. It
relies on an equivalence theorem that employs exact boundary conditions and the
vorticity definition on the domain boundary. This approach is particularly attractive
for high-order methods for which the often-used influence matrix method fails to
converge for1t→ 0. The accuracy and the robustness of the new method is demon-
strated in the context of several spectral element simulations of unsteady two- and
three-dimensional internal and external flows. In particular, the flow past a finite
span cylinder attached to end-plates is studied in some detail in order to evaluate the
effects of the aspect ratio on the formation length.c© 1999 Academic Press

1. INTRODUCTION

The vorticity–velocity formulation of the Navier–Stokes equations has emerged as an
attractive alternative to the velocity–pressure formulation in simulating incompressible
flows [8, 16, 32, 40]. Several general advantages of this formulation are often cited in the
literature: (1) it deals with the physically relevant variables of vortex dominated flows;
(2) it works in both two- and three-dimensions; (3) it eliminates the pressure term, which
leads to a simple diffusion operator rather than the Stokes operator; (4) boundary conditions
can be easier to implement in external flows where the vorticity at infinity is easier to
set than the pressure boundary condition; and (5) no additional computational work is
required to evaluate noninertial terms since all noninertial effects arising from rotation
and translation of the reference frame enter into solution through the initial and boundary
conditions [45]. Specifically, in the finite element context, the vorticity–velocity formulation
produces avorticity fieldthat is C0(Ä) continuous across elemental interfaces. This is unlike

1 Corresponding author.

32

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press
All rights of reproduction in any form reserved.



METHOD FOR VORTICITY–VELOCITY FORMULATION 33

the velocity–pressure formulation, where continuity of vorticity across elemental interfaces
is achieved only upon convergence.

In this paper, a new vorticity–velocity numerical formulation, based on a penalty method,
is presented. It is implemented in the context of semi-implicit temporal discretization and
spectral element spatial discretization. The penalty method is the key to imposing robust
and stable high-order accurate vorticity boundary conditions. Several numerical tests will
demonstrate that high-order accuracy is achieved with the penalty method. The exponential
convergence, the minimization of the dispersion and dissipation errors, and the geometric
flexibility of the spectral element method make it particularly well suited for simulating
turbulent flows. However, this method (and, in general, any high-order method) is more
sensitive to boundary condition implementation. In particular, the influence matrix method
[52] described in Section 3 has been used to impose the vorticity boundary conditions, but it
was discovered that it has fundamental numerical limitations for high-order discretizations,
as it does not converge as1t→ 0.

The formulation presented here expands both the vorticity and velocity fields in the
same discrete space (polynomial order,PN−PN formulation). However, a fundamental
theoretical question of which discrete space should be used to expand the vorticity and
velocity terms remains. Low-order finite element vorticity–velocity formulations expand
the vorticity in a subspace of lower order than the velocity [16, 15, 19, 39, 40] and finite
difference vorticity–velocity formulations use a staggered grid [8, 9, 29, 30, 17, 46, 18,
32, 56, 11, 13]. Numerical evidence from our work suggests that, for the proposed splitting
formulation, there is no obvious incompatibility in the spaces of velocity and vorticity. This,
in turn, allows for an easy implementation of the proposed formulation.

This paper is organized as follows: In Section 2, we present the equivalence theorem for
the vorticity–velocity formulation. In Section 3 we analyze the influence matrix method.
In Section 4, the accuracy of the penalty method is demonstrated with several analytical
problems, and the scaling of the error with the penalty term is determined by numerical
experiments. In Section 5, a discussion of treatment of corner singularities and the effect
of rounding the corners are presented. In Section 6, the simulation of flow past a two-
dimensional cylinder at Reynolds number Re= 1000 is compared with a velocity–pressure
flow solver, and a three-dimensional simulation of a cylinder with end-plates shows the
effect of side boundaries on the formation length. We conclude in Section 7 with a brief
summary of the results. Finally, in Section 8 we include some details of the implementation,
as well as representative parallel timings.

2. EQUIVALENCE THEOREM

We first state the canonical velocity–pressure form of the unsteady incompressible three-
dimensional Navier–Stokes equations and the two proposed forms of the vorticity–velocity
systems—rotational and Laplacian. The canonical velocity–pressure form of the incom-
pressible Navier–Stokes equations is

∂u
∂t
+ (u · ∇)u = −∇ p+ 1

Re
∇2u in Ä (1a)

∇ · u = 0 inÄ (1b)

u = u0 on0D; ∂u
∂n
= 0 on0N, (1c)
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where the velocity boundary conditions must satisfy the constraint
∫
0

u ·n d0 = 0, and the
initial conditions for the velocity must be supplied,u(x, t = 0). Here0D is the Dirichlet
boundary and0N is the Neumann boundary.

The proposedrotational form of the vorticity–velocity formulation of the incompressible
Navier–Stokes equations is

∂ω

∂t
+∇ × (ω × u) = − 1

Re
∇ × ∇ × ω in Ä (2a)

∇2u = −∇ × ω in Ä (2b)

with boundary constraints and initial conditions

ω = ∇ × u on0 (2c)∮
ck

(
∂u
∂t
+ ω × u+ 1

Re
∇ × ω

)
· ds= −

∮
ck

d

(
p+ 1

2
u · u

)
, k = 1, . . . , p, (2d)

u = u0 on0D; ∂u
∂n
= 0 on0N (2e)∫

0

u · n d0 = 0 or ∇ · u = 0 at one point on0 (2f)

ω = ∇ × u at t = 0 inÄ, (2g)

where the domain isp-multiply connected andck’s are thep independent contours and the
initial conditions for the velocity must be supplied,u(x, t = 0). The equivalence between
the rotational form of the vorticity–velocity equations, Eqs. (2), and the canonical velocity–
pressure form, Eqs. (1), will be demonstrated by Theorems Ia, II, III, and IV.

The proposedLaplacian form of the vorticity–velocity formulation of the incompressible
Navier–Stokes equations is

∂ω

∂t
+∇ × (ω × u) = 1

Re
∇2ω in Ä (3a)

∇2u = −∇ × ω in Ä (3b)

with boundary constraints and initial conditions

ω = ∇ × u on0 (3c)

∇ · ω = 0 on0 (3d)∮
ck

(
∂u
∂t
+ ω × u+ 1

Re
∇ × ω

)
· ds= −

∮
ck

d

(
p+ 1

2
u · u

)
, k = 1, . . . , p, (3e)

u = u0 on0D; ∂u
∂n
= 0 on0N (3f)∫

0

u · u d0 = 0 on∇ · u = 0 at one point on0 (3g)

ω = ∇ × u at t = 0 inÄ, (3h)

where the domain isp-multiply connected andc′ks are p independent contours and the
initial conditions for the velocity must be supplied,u(x, t = 0). The equivalence between
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the Laplacian form of the vorticity–velocity equations, Eqs. (3) and the canonical velocity–
pressure form, Eqs. (1), will be demonstrated by Theorems Ib, II, III, and IV.

The equivalence theorem states that the vorticity and the velocity obtained from systems
(2) and (3) are identical to the vorticity and velocity from system (1). The only difference in
the proof of equivalence between the rotational and Laplacian form of the vorticity–velocity
equations is in the way the divergence-free vorticity condition is enforced. In Theorem Ia,
the rotational form of the equations, Eqs. (2), implicitly sets the derivatives of the divergence
to zero by using thecurl form of the diffusion term. In Theorem Ib, the Laplacian form of
the equations, Eqs. (3), explicitly sets the divergence of vorticity to zero on the boundary.

THEOREM Ia. A necessary and sufficient condition for the vorticity–velocity equations
(2) to satisfy the condition that the vorticity is divergence-free at all times in the domainÄ is
that the definition of vorticity must be satisfied in the domain initially(Shen and Loc[41]).

Remark on Theorem Ia.The rotational form of the vorticity transport equation, Eq. (2a),
is a convenient form to prove that vorticity is divergence-free. However, the rotational form
couples all three components of the vorticity. This means that all three components of the
vorticity must be computed simultaneously.

THEOREM Ib. A necessary and sufficient condition for the vorticity–velocity equations
(3) to satisfy the condition that the vorticity is divergence-free in the domain is that the
definition of vorticity must be satisfied in the domain initially and on the boundary at all
times(Quartapelle[37]).

Remark on Theorem Ib.The equation governing the evolution of the divergence of
vorticity is parabolic with homogeneous Dirichlet boundary conditions. The homogeneous
Dirichlet boundary conditions can be replaced by homogeneous Neumann boundary condi-
tions, which are just∇(∇ ·ω) = 0 on the boundary0. This term,∇(∇ ·ω), is implicitly set
to zero in Eq. (2a) of the rotational form in the entire domainÄ. Setting either the Dirichlet
or Neumann divergence-free vorticity boundary conditions explicitly on the boundary is
perhaps preferred over solving the rotational form because later the penalty method will be
shown to be well suited to imposing complicated constraints on the boundary. Also, by using
the Laplacian form of the vorticity–velocity equations, one is able to use standard solvers
and avoid the nonsymmetric coupled solvers needed for the vorticity in the rotational form.

It will be proven here that the definition of vorticity is governed by a Laplace equation
with the definition of vorticity enforced on the boundary0 in the proposed vorticity–velocity
formulations, implying the definition of vorticity is satisfied in the domainÄ. The proof is
based on a vector identity and on Eq. (2b) or (3b).

THEOREM II. Necessary and sufficient conditions for the definition of the vorticity to
be satisfied everywhere in the domain are that the definition of vorticity is satisfied on the
boundary and the vorticity is divergence-free(Theorem Ia or Theorem Ib).

Proof. Consider the vector identity in terms of the velocity,

∇2u = ∇(∇ · u)−∇ × (∇ × u) (4)

and Eq. (2b) or (3b)

∇2u = −∇ × ω. (5)
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Equating the right sides of these two equations and manipulating gives

∇ × (ω −∇ × u) = −∇(∇ · u). (6)

Taking thecurl of this equation gives

∇ × ∇ × (ω −∇ × u) = −∇ × ∇(∇ · u), (7)

where the right-hand side is zero. Applying the vector identity to the left-hand side gives

∇[∇ · (ω −∇ × u)] −∇2(ω −∇ × u) = 0. (8)

The first term drops out because the vorticity is divergence-free in the domain from
Theorem Ia or Ib, and the second term is zero because derivatives are interchangeable.
Thus,

∇2(ω −∇ × u) = 0. (9)

Hence, by the minmax principle for the Laplace equation and the fact that the definition of
vorticity is satisfied on the boundary, the definition of vorticity is satisfied everywhere in
the domain.

THEOREMIII. A necessary and sufficient condition for the velocity to be divergence-free
in the domain is for the definition of vorticity to be satisfied in the domain and for either
global mass balance to be satisfied or the velocity to be divergence-free at one point on the
boundary(Daube[8]).

We also require that the total pressure (i.e., static plus dynamic pressure) is single-valued.
Stella and Guj [46] derived a constraint from a pressure single-valuedness argument in
multiply-connected domains and showed, by example, that the constraint is necessary by
considering the Taylor–Couette problem. A more general constraint for multiply-connected
domains was derived by Daube [9].

THEOREMIV. A necessary and sufficient condition for the total pressure, p+ 1
2u ·u, to

be single-valued if the domain is p-multiply connected is for
∮

ck
(∂u/∂t+ω×u+ (1/Re)∇×

ω) · ds= 0 for k= 1, . . . , p, on p independent contours.

The constraint can be reduced to∮
ck

(∇ × ω) · ds= 0, (10)

if the contour is on a solid surface where theno-slipcondition is required. For a 2D flow past
a cylinder, the constraint applied to the cylinder surface with the no-slip condition further
reduces to ∮

c

∂ω

∂n
ds= 0, (11)

wheren is the normal to the surface of the cylinder andc is the contour around the surface of
the cylinder. For a 3D flow past a cylinder the side boundary conditions need to be taken into
account. In practice, it is convenient to impose the constraint in Eq. (10) on a no-slip surface
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instead of the more general form of the constraint in Theorem IV, because the expression
takes on a simpler form that just involves the vorticity.

One of the key steps in proving equivalence for both the rotational and Laplacian forms
is enforcing the definition of vorticity on the boundary. This important result from the
equivalence theorem provides a linear coupling between the vorticity and velocity on the
boundary and is necessary to guarantee that Eqs. (2) and (3) give the correct vorticity and
velocity fields.

3. UNRESOLVED ISSUES IN THE INFLUENCE MATRIX METHOD

The influence matrix technique has often been used to impose linear constraints on the
boundary implicitly. Kleiser and Schuman [27, 28] were among the first to use the influence
matrix technique to impose pressure boundary conditions in their channel simulation for
the velocity–pressure equations. Vanelet al. [54] used an influence matrix technique to
solve the Navier–Stokes equations based on a vorticity-streamfunction spectral method
formulation. Daube simulated axi-symmetric flow [8] in a cylindrical tank by solving the
vorticity–velocity equations using an influence matrix technique identical to the one pre-
sented here.

The influence matrix method relies on thelinearity of the semi-discrete equations, with
the nonlinear terms treated explicitly. We can separate the 2D vorticity–velocity equations
into a time-dependent and time-independent problem,

ω(x, t) = ω̃(x, t)+
N0∑

k=1

λkω̂k(x) (12a)

u(x, t) = ũ(x, t)+
N0∑

k=1

λkûk(x), (12b)

whereλk’s will be determined by enforcing the definition of vorticity on the boundary and
N0 is the number of nodes on the boundary. The time-independent equations need only be
solved once and are(

Re

1t
−∇2

)
ω̂k = 0; ω̂k(γ j ) = δk j ∀γ j ∈ 0 (13a)

∇2ûk = −∇ × ω̂k, û = 0. (13b)

The time-dependent problem is(
Re

1t
−∇2

)
ω̃n+1 = Re

1t
ωn − Re(un · ∇)ωn, ω̃n+1

0 = 0 (14a)

∇2ũn+1 = −∇ × ω̃n+1, ũn+1 = u0. (14b)

The influence of the boundary vorticity on the interior flow is represented by the influence
matrix. The influence matrix equations are constructed by substituting the time dependent
and independent solutions into the definition of vorticity on the boundary and then solving
for λk’s. More details about this method can be found in [51].
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3.1. Numerical Boundary Layers

The cost to store the time-independent solution for the influence matrix technique is
typically very large. This cost can be offset by increasing the computational cost of the flow
solver, but the influence matrix will still have to be stored [50]. Furthermore, the rank of
the influence matrix (i.e. degrees-of-freedom on the physical boundary) can be rather large
and the matrix is not symmetric. It is important to note that the influence matrix technique
is limited to solving problems with fixed grids and time steps, which excludes the class
of problems with moving boundaries or adaptive remeshing and time stepping. However,
all these difficulties are not nearly as discouraging as the intrinsicstiff numerical boundary
layers in the formulation that become more severe as1t goes to zero.

The numerical stiffness caused by the influence matrix technique has previously gone
unnoticed. It will be shown that this numerical stiffness increases as the Reynolds number
is raised and as the numerical time step decreases. A possible explanation of why the
numerical stiffness in the influence matrix technique has been overlooked is that the low-
order schemes previously used to solve the vorticity–velocity equations have a tendency
to smooth sharp boundary layers artificially. On the other hand, the high-order method
presented here must resolve the steep boundary layers because high-order methods have
minimal artificial dissipation. Researchers using the technique have limited their studies to
low Reynolds numbers [6], where the numerical stiffness is not as severe. Another possible
reason for the omission is the influence matrix technique has been successfully used to
impose pressure boundary conditions in the velocity–pressure formulation of the Navier–
Stokes equations. In the velocity–pressure formulation, numerical stiffness does not occur
unless a Fourier expansion is used in at least one direction, and even then, only if the wave
number is large does the problem manifest itself.

To demonstrate the numerical boundary layers in the influence matrix technique, we will
consider a one-dimensional model problem. The spatial discretization does not affect the
size of the numerical boundary layers but, as mentioned earlier, it affects the way in which
poorly resolved numerical boundary layers are handled. For example, high-order schemes
will allow Gibbs oscillations, while low-order methods will exhibit a local smeared shock-
type profile. This is the reason why high-order schemes are more susceptible to instability
than low-order schemes that seem to be more robust.

Consider the linear one-dimensional advection–diffusion equation on a semi-infinite
domain,

∂ω

∂t
= Uc

∂ω

∂x
+ ν ∂

2ω

∂x2
, 0< x <∞

ω(0, t) = 1, limx→∞ ω(x, t) = 0.

(15)

A simple Euler-forward approximation on the advection term, and an Euler-backward
approximation on the diffusion term give(

1

ν1t
− ∂2

∂x2

)
ωn+1 = 1

ν1t
ωn + Uc

ν

∂ωn

∂x
. (16)

Note that, in practice, Euler-forward approximation would not be used for the advection
term because of stability problems, but for this model problem it will suffice. The time-
independent influence matrix problem is constructed by solving the equation with a pulse
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on the boundary but no forcing function. So, the time-independent Helmholtz equation is

(
1

ν1t
− ∂2

∂x2

)
ω̂ = 0, ω̂(0) = 1. (17)

The exact solution to this problem is ˆω(x) = e−(x/
√
ν1t). We are interested in small values of

the viscosity,ν, because we are interested in high Reynolds number flows. The time step will
be small also because we want to accurately simulate unsteady flows and satisfy the CFL
stability limit. Therefore, the thickness of the numerical boundary layer,O(

√
ν1t), will

be small. The boundary layer based on Eq. (15) isO(ν/Uc), and typical physical laminar
boundary layers scale asO(√νx/Uc). So, the numerical boundary layers can always be
made smaller than the physical boundary layers by decreasing the time step1t . Usually, it
is desirable for the numerical boundary layer to be small. In fact, many times, the smaller
the numerical boundary layer the more accurate the solution. For instance, the pressure
boundary conditions in the splitting scheme for the velocity–pressure form of the Navier–
Stokes equations are chosen to minimize the numerical boundary layer around the walls
[25]. Another example, where one wants to minimize the numerical normal boundary layers
is at outflow boundaries, where an artificial boundary condition has been applied. However,
in our case the numerical boundary layermust be resolvedin order to obtain accurate
vorticity boundary conditions. If the numerical boundary layer is smaller than the physical
boundary layer, then the spatial resolution needed is determined by the influence matrix
technique, instead of the physical problem. The situation where the numerical technique
increases the stiffness of the problem is highly undesirable.

Now let us use the Kovasznay flow test case, a 2D steady Navier–Stokes flow solution with
a perturbation in the initial conditions, to demonstrate that the influence matrix technique
is not convergent in time. The Kovasznay flow withO(ε) perturbation is

u(x, y) = 1− eβx cos 2πy+ ε sin2

(
π

2
x

)
sin2

(
π

2

(
y+ 1

2

))
(18a)

v(x, y) = β

2π
eβx sin 2πy+ ε sin2

(
π

2
x

)
sin2

(
π

2

(
y+ 1

2

))
, (18b)

whereβ =Re/2−
√

Re2/4+ 4π2. We are going to examine the error as a function of
time of the perturbed Kovasznay flow solution. It will be shown that as the time step gets
smaller, then the solution will blow up, due to underresolution of the numerical boundary
layers. In an attempt to simplify the problem as much as possible, we will use one element
to approximate the domain ofx ∈ (0, 2) andy∈ (−0.5, 1.5) with fixed spatial resolution.
Details of the time-splitting scheme and of implementation are given in the Appendix.

We start with a set of parameters that lead to convergence when using the perturbed
Kovasznay initial conditions, Eq. (18). For the following tests, the Reynolds number is
fixed at 40 and the amplitude of perturbation,ε, is fixed at 10−2. The only parameter varied
is the time step,1t . The left plot in Fig. 1 shows theL2 error in the velocity converges, using
a 40th-order polynomial and a time step of 10−3. Next, in the right plot in Fig. 1 the time step
is reduced to 10−4 with all other parameters fixed. In this case, theL2 error of the velocity
diverges in time. The reason is the length of the numerical boundary layers arising when
computing the vorticity boundary conditions using the influence matrix technique have
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FIG. 1. Time history of theL2 error in the velocity of the Kovasznay flow, 2D steady Navier–Stokes flow, at
Reynolds number 40 for one spectral element fromx ∈ (0, 2) andy∈ (−0.5, 1.5) with a 40th-order polynomial
and a time step of1t = 10−3 for the left plot and1t = 10−4 for the right plot.

decreased with the time step. As a result, the spatial resolution of 40th-order polynomial is
not sufficient to resolve the numerical boundary layers.

Another way to verify that the source of the problem is the construction of the vortic-
ity boundary conditions using the influence matrix technique is by enforcing the correct
vorticity at the boundary for the case that diverges. If the influence matrix technique is
the source of the problem, then the solution will converge because the solution containing
the numerical boundary layers is circumvented. In general, this test is not possible be-
cause the vorticity on the boundary is not known, but for the Kovasznay test case we know
the steady solution. The test reveals that theL2 error of the velocity converges when the
vorticity on the boundary is fixed, so our suspicions about the influence matrix technique
are confirmed. A more systematic study of this instability phenomenon for high-order dis-
cretizations is presented in [51], where other such examples are also included.

A solution to this problem is to map out the steep boundary layers in the time-independent
problem. Mappings of this kind have been constructed for high-order methods [5]. This is
only economical if the numerical boundary layers are not present in the time-dependent
equations, so the cost of the mapping can be limited to the preprocessing stage. However,
we will not attempt to correct the numerical boundary layer problem in the influence ma-
trix technique. Instead, we will consider an alternative technique to impose the vorticity
boundary conditions—the penalty method.

4. PENALTY METHOD

Recently, penalty methods have been used to successfully implement boundary condi-
tions in high-order discretizations. For example, multidimensional asymptotically stable
finite difference schemes on complex geometries have been developed by Abarbanel and
Ditkoedki [2, 1], using a penalty method to impose Dirichlet boundary conditions. Also,
Hesthaven and Gottlieb [22, 20, 21] developed a penalty method to enforce boundary condi-
tions for shock-free compressible Navier–Stokes simulations. This penalty method enforces
the boundary conditions, as well as accounting for the governing equation at the boundary.
In the classical version, the equation is penalized everywhere in the domain. Such aglobal
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penalty method developed by Temam [48] and successfully used by Hughes [23] imposes
a penalty term in theentiredomain, which leads to excessive stiffness and poor efficiency.
The computational advantage of imposing the penalty term on theboundaryhighlights the
importance of the equivalence theorem.

4.1. Multidimensional Formulation

The vorticity transport equation with the penalty boundary conditions is

∂ω

∂t
+∇ × (ω × u) = 1

Re
∇2ω − τQ(x)Dω − τcQc(xc)Fω, (19)

whereDω=ω−∇ ×u, Fω=
∫

c(∇ ×ω) · ds, τ is the penalty term that imposes the defini-
tion of vorticity, andτc is the penalty term that imposes the multiply-connected constraint
on the body. The function

Q(x) =
{

1, if x is on0,

0, otherwise,
(20)

ensures that the definition of vorticity is imposed only on the boundary, and the function

Qc(xc) =
{

1, if x is on0c,

0, otherwise,
(21)

ensures that the multiply-connected condition is imposed only on the body.1

The weak form of the vorticity transport equation using the penalty method to impose
the vorticity boundary conditions is(

ψ,
∂ω

∂t

)
+ (ψ,∇ × (ω × u))

= − 1

Re
(∇ψ,∇ω)− (ψ, τQ(x)Dω)− (ψ, τcQc(xc)Fω)+

∫
0

ψ
∂ω

∂n
d0, (22)

where(·, ·)= ∫
Ä

dÄ andψ ∈ H1(Ä). The last term in the weak form of the vorticity equa-
tion arises from the integration by parts of the diffusion term. The dominant boundary terms
in (22) are the penalty terms. The boundary term arising from the integration by parts is sub-
dominant. Leaving out the integration by parts boundary term can be justified as the penalty
terms,τ andτc, become larger and dominate the boundary. Later it will be shown that spec-
tral convergence can be achieved using the penalty method when the subdominant boundary
term is neglected. However, neglecting this term can explain why such a large penalty pa-
rameter is needed. Some test cases demonstrating this will be shown later in this section.

Now the vorticity and velocity are coupled on the boundary by the vorticity boundary
conditions and the multiply-connected constraint. This strong coupling is undesirable with
the current numerical formulation because it requires both the vorticity and velocity to be
solved simultaneously. In this case, fast linear solvers, based on the semi-discrete equations,
cannot be used. Hence, a time extrapolation of the penalty terms on the boundary of the form

Dn+1
ω = ωn+1−∇ × un (23a)

Fn+1
ω =

∫
c
(∇ × ωn) · ds (23b)

1 We consider the case where the boundary of the domain is stationary.
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FIG. 2. Mesh and streamlines for 2D Kovasznay flow test case at Reynolds number 40. Note the mesh cluster
elements in the wake.

is used, so the fast linear solvers can be applied. We accept this time error caused by lag-
ging the vorticity boundary conditions with the understanding that the numerical method
already requires a small time step due to the CFL limit caused by treating the nonlinear
terms explicitly. Note that the penalty boundary terms, Eq. (23), are imposed using a first-
order extrapolation in time. High-order extrapolation schemes in time could be used, but
first-order has given satisfactory results.

We will test the penalty method on a steady 2D Navier–Stokes solution. We will address
two questions when solving the test case. First, can spectral accuracy be achieved with the
penalty method? Second, how does the penalty parameter scale with the mesh parameters,
such as polynomial order?

We consider again the Kovasznay flow test case given in Eq. (18) with the perturbationε

set to zero for the purpose of demonstrating that high-order accuracy can be achieved using
the penalty method. Figure 2 shows a plot of the mesh and the streamlines at Reynolds
number 40. Figure 3 shows that the error in the vorticity and velocity scales inversely with

FIG. 3. Plot (left) showing the error as a function of penalty parameter with a 10th order polynomial and a
plot (right) demonstrating the exponential convergence of the 2D Kovasznay test case at Reynolds number 40.



METHOD FOR VORTICITY–VELOCITY FORMULATION 43

the penalty parameter,τ . Exponential convergence is achieved in the vorticity and velocity
using the maximum norm.

5. CORNERS, DISCONTINUITIES, AND VORTICITY

Nonsmooth computational domains can give rise to singular solutions, which are espe-
cially problematic in the vorticity–velocity formulation. The solution of an elliptic problem
in a domain with a corner of angle (απ ) solved in local polar coordinates has the form

u(r, θ)∝ r βζ(θ)χ(r, θ), (24)

whereζ(θ) is a smooth function andχ(r, θ) is a smooth cutoff function. For these types of
problems, the convergence rate estimates for the spectral element solution is

‖u− uN‖ ≤ C N−2β−ε, (25)

whereuN is the numerical solution andε is a small positive constant. For most problems,
β =π/α, so the convergence rate lies betweenO(N−1) andO(N−2). These results can be
applied to the velocity Poisson equations, Eq. (2b), or Eq. (3b), and the regularity of the
vorticity can be estimated from the regularity of the first derivative of the velocity. Sev-
eral techniques have been used to overcome this difficulty such as auxiliary mapping and
supplementary basis functions [36]. One supplementary basis function formulation used
to recover high-order convergence which is particularly attractive is an eigenpair represen-
tation called the Steklov formulation [57, 47]. Here, we want to study the effect of sharp
corners on the vorticity by rounding the corner and vary its curvature systematically. In this
case, the main question is how large must the curvature be for the rounded corner to accu-
rately approximate the sharp corner geometry. We recognize that the answer to this question
is problem-dependent. Therefore, we will limit our corner study to the 2D backward-facing
step and the 3D conduit expansion problem, which are representative of the geometries that
are of immediate interest in our work. Furthermore, it is noted that the singularity issue
is exaggerated in the vorticity–velocity equations, compared with the velocity–pressure
equations, because the vorticity is less regular. In velocity–pressure formulations it is
the pressure which is infinite at corners with angles greater thanπ and thus, in princi-
ple, the same sort of difficulty should be encountered with this formulation. However, the
elliptic equation for the pressure is supplemented with Neumann boundary conditions, and
by defining anormalvector at a corner, one effectively rounds the corner and, thus, a finite
value of the pressure at the corner results.

5.1. Flow over Expansions

First, the nature of the corner problem will be explored by considering the 2D backward-
facing step as a test case [24]. The inlet channel height ish= 1.06 and the outlet channel
height isH = 2.0 to match the expansion ratio in the experiments by Armalyet al. [3]. The
step corner will be rounded and the limit of large curvature will be taken to demonstrate
that the features of the solution asymptote to the sharp corner solution. Figure 4 shows
the vorticity contours for the backward facing step with an increasingly sharper corner.
The vorticity contours look very similar, especially plots (2) and (3) in Fig. 4, with the
sharper corners. The meshes used to obtain the results are also shown in Fig. 4. The step
problem with a sharp corner is solved usingNεκT αr [55]—an unsteady incompressible
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FIG. 5. Vorticity contours generated usingNεκT αr—velocity-pressure flow solver for the sharp corner 2D
backward facing step problem. In part (2a) of the figure the vorticity contours are shown and in part (2b) a 10-fold
magnification of the vorticity contours around the corner is shown with the mesh shown in part (1). The Reynolds
number is 100, based on2

3
(Umax(2h)/ν), and an 8th-order polynomial is used within each element.

velocity–pressure Navier–Stokes solver. The vorticity contours and corresponding mesh
from the velocity–pressure solver are plotted in Fig. 5. Notice the similarity between the
rounded corner result fromIVVA—the vorticity–velocity solver, and the sharp corner
result from the velocity–pressure solver. Figure 6 shows the separation length as a function
of corner curvature predicted by the vorticity–velocity solver and is plotted along with
the experimental value and predicted value from the velocity–pressure solver. Both the
experiment and the velocity–pressure solver predict a nondimensional separation length of
approximately 2.7. Note that the separation length is defined as the distance between the
separation point and the reattachment point. For a sharp corner, the separation point is fixed
at the corner. However, the location of the separation point for the rounded corner is not fixed.

Figure 6 shows two important results: First, both the experiment by Armalyet al. [3] and
the numerical simulation using the velocity–pressure solver agree. Second, the separation
length predicted by the vorticity–velocity flow solver approaches the above-mentioned
experimental and numerical sharp corner result as the corner curvature is increased. It is
interesting to see how the corner curvature affects the vorticity along the wall. A comparison
of the vorticity along the lower wall of the backward-facing step with the different curvatures
is shown in Fig. 7. Notice that the vorticity around the corners with curvature 10 and 100
are almost identical, except at the point at the corner where the vorticity approaches a large
negative value. It can be seen in Fig. 7 that the maximum in the vorticity on the wall increases
with curvature.

The next corner test case is internal flow in a 3D conduit expansion. The smaller
pipe has a diameter of one and the larger pipe has a diameter of two. The domain is
divided into 1028 hexahedra elements. Figure 8 shows the computational domain and
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FIG. 6. The solid dots in the figure are the separation length (normalized with the step height) as a function
of the corner curvature calculated using the vorticity–velocity flow solver for Reynolds number 100, based on
2
3
(Umax(2h)/ν). The separation length is defined as the distance between the reattachment point and the separation

point. The straight line corresponds to the separation length found experimentally by Armalyet al. [3] and the
numerical simulation from the velocity–pressure solver for the sharp corner case.

Fig. 9 shows both the nondimensional reattachment length (also called here the bubble
length, L/Do), and distance of the center of the eddy (or the bubble center),L2/Do, as
a function of the Reynolds number, based on the small diameter and mean inlet velocity,
Re=WoDo/ν. Figure 9 shows the experimental results by Macagno and Hung [31], 3D

FIG. 7. A plot and zoom (right) of the vorticity along the lower wall as a function of the distance along the wall
for Reynolds number 100. The three cases with finite curvature of 1, 10, and 100 are from the vorticity–velocity flow
solver. The step flow case with an infinitely sharp corner is from the velocity–pressure solver. The rounded corner
of the 2D backward facing step has a steep but continuous vorticity distribution. The minimum in vorticity on the
lower wall corresponds to the start of the corner and the maximum corresponds to the end of the corner. Hence, in
the sharp corner case, run using the velocity–pressure solver, there is a discontinuity in the vorticity at the corner.
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FIG. 8. A plot of the computational domain of the three-dimensional conduit with rounded corners. There are
1028 elements at the fourth-order polynomial in the mesh. Notice the curvature at the rounded corner is torus in
nature, where there are two radii of curvature defining the geometry—pipe and turning curvature with the turning
curvature five.

FIG. 9. A plot of the bubble length and bubble center for the three-dimensional conduit as a function of the
Reynolds number is shown. The plot compares the experimental results by Macagno and Hung, 3D numerical
simulation using the vorticity–velocity solverIVVA, 3D numerical simulation using the tetrahedral velocity–
pressure solverNεκT αr [43], and a 2D axi-symmetric numerical simulationPRISM [33].
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numerical simulation using the vorticity–velocity algorithm (IVVA), 3D numerical
simulation by Sherwin and Karniadakis [42] using tetrahedral velocity–pressure solver
(NεκT αr), and 2D axi-symmetric numerical simulation by Newman [33] (PRISM).

The curvature at the junction of the conduit expansion is torus, where the turning cur-
vature is five. It is the length and center of the bubble around the torus-shaped corner,
calculated using the vorticity–velocity solver that is going to be compared with other ex-
periments and computations in Fig. 9. The experiment and the velocity–pressure com-
putations are going to be for the sharp corner conduit expansion. For the finite curva-
ture geometry, shown in Fig. 8, we expect that the bubble length calculated using the
vorticity–velocity solver will underpredict the experimentally measured length, based on
the experience from the 2D backward-facing step results shown previously. The amount
of underprediction will directly depend on the turning curvature at the junction. For the
3D conduit problem, we are not going to increase the turning curvature. For this test case,
the curvature is fixed and the inlet Reynolds number is varied to test the Reynolds num-
ber dependence of the recirculation bubble length and center. For the sharp corner case,
the bubble length and distance of the center are a linear function of the Reynolds number
for the range considered. So, we expect that the bubble length and center will be a linear
function of Reynolds number for the rounded corner expanding conduit. Figure 9 con-
firms the linear dependence of the bubble length and center as a function of the Reynolds
number, calculated using the vorticity–velocity solver. It is interesting to note that the bub-
ble length seems to be more sensitive to the rounded corner than the bubble center. The
difference between the prediction of the bubble center from the rounded corner and the
sharp corner is indistinguishable on the graph, while the rounded corner expanding conduit
underpredicts the bubble length determined by the sharp corner case. Again, this under-
prediction is expected, based on the results from the 2D backward–facing step tests done
previously.

6. EXTERNAL FLOWS

6.1. Two-Dimensional Flow Past a Cylinder

An interesting point about boundary conditions for cylinder flows or for general external
flows, is that the velocity is known on the cylinder, while the vorticity is not. In contrast, one
can argue that the vorticity is known on the far field boundary condition, while the velocity
is not. So, the vorticity on the cylinder and outflow is calculated using the definition of
vorticity. The far field regions are assumed to be irrotational, so the vorticity is set to zero.
On the cylinder, the velocity is set to zero to impose the no-slip condition. The flux of the
velocity is set to zero at the outflow, and the velocity is set to the free stream condition at
the far field boundary. The outer region, where the flow is irrotational, is relatively coarse.
Notice that the “far” field boundaries are relatively close to the cylinder at 5 diameters, and
the outflow is 15 diameters from the cylinder.

We have performed a detailed comparison of the instantaneous and average vorticity and
velocity from the incompressible Navier–Stokes flow codesIVVA andNεκT αr for
cylinder flow at Reynolds number 1000. (IVVA is the spectral element vorticity–velocity
developed in this work.NεκT αr is a hybrid spectral/h-p element velocity–pressure solver
that uses both triangles and quadrilaterals [43, 55]). For the comparison to follow, the mesh,
number of elements, and polynomial order is the same for both solvers. This detailed
two-dimensional comparison has the dual purpose of benchmarking the vorticity–velocity
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FIG. 10. A comparison of instantaneous vorticity contours for two-dimensional cylinder flow at Reynolds
number 1000. The contour plot on the top is from the vorticity–velocity solverIVVA, while the contour plot
on the bottom is from the velocity–pressure solverNεκT αr. Both results were obtained using 94 elements with
14th-order polynomial. Identical contours levels are used for both plots. Also, the simulations were started from
the same initial conditions and integrated to the same time.

code for an unsteady flow and highlighting the strengths of the method. The intention-
ally selected small external flow domain favors the vorticity–velocity code because of the
method’s ability to impose irrotational boundary conditions and robustly handle outflow
boundary conditions. The outflow will be a problem forNεκT αr and will have to be
treated with a viscous sponge outflow boundary condition that acts to dampen the waves
created by the outflow boundary condition.

Figure 10 compares the instantaneous vorticity calculated by the two codes. The vorticity
is similar near the cylinder. However, the differences at the side walls are due to the blocking
effects of the velocity–pressure boundary conditions used in the velocity–pressure code.
Also, the viscous outflow sponge used to stabilize the velocity–pressure code is affecting the
vorticity at the outflow. A comparison of the average streamwise velocity profile atx/D = 1
of the average field in Fig. 11 shows theblockage effectfrom the boundary conditions in the
velocity–pressure code. Notice that the blockage effect from the boundary conditions is not
limited to the exterior flow, but effects the wake profile dramatically. Hence, the difference
between the two simulations is significant in the wake. A comparison of the time trace and
power spectrum from the shear layer on the cylinder and the near wake show very good
agreement between the simulations. The dominant nondimensional frequency (Strouhal
number) is 0.242 for the vorticity–velocity code and 0.25 for the velocity–pressure code.
The slightly higher frequency of 0.25 predicted by the velocity–pressure code is because
the blockage effects due to the close external boundaries is more pronounced.
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FIG. 11. A comparison of theu-profile atx/D= 1 of the average field fromIVVA andNεκT αr. The
effects of blockage for the velocity–pressure formulation are obvious.

6.2. Three-Dimensional Flow Past a Cylinder with End-Plates

In this simulation we consider flow past a finite length cylinder mounted on end-plates.
This configuration is used in experimental arrangements in order to minimize oblique
shedding [10]. However, experiments with relatively small aspect ratio (AR) [34], i.e.
cylinder length over diameter, have shown that the formation length is a strong function
of this aspect ratio. The formation length here is defined as the maximum length of the
recirculating zone in the near-wake.

Here we consider such a model problem with the end-plates located in a region from
−10< x< 4.5 and−10< y< 10 at bothz= 0 and 10 while the exit of the domain goes to
x= 25. All lengths are normalized by the diameter and the origin is located at the center
of the cylinder. In Fig. 12 a sketch of the computational model problem is shown. Note

FIG. 12. Sketch of the 3D cylinder flow domain bounded by end-plates (shaded).
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the origin of the coordinate system is denoted with O. The Reynolds number based on the
cylinder diameter and maximum inlet velocity is 500. At this Reynolds number we expect
the cylinder wake to be turbulent for large aspect ratios. Here the ratio of distance between
the walls to cylinder diameter is 10, which is on the lower side of what is typically used
in an experiment. TheY direction is periodic throughout the entire domain. Downstream
past the endplates, theZ direction is also periodic. The usual outflow boundary conditions
shown to work in 2D cylinder flow are applied here.

The inlet velocity is

u(z) = 1− e−2z− e2(z−10), 0< z< 10, (26a)

u(0) = u(10) = 0. (26b)

We specify such an inlet velocity in order to avoid the singularity in vorticity that occurs in
the boundary layers at the leading edge of the walls. The exponential form of the boundary
layers is supposed to mimic the shape of a boundary layer. The boundary layer has 10
diameters to “adjust” before it encounters the cylinder. The boundary layers are viewed as a
perturbation to the cylinder wake. A horseshoe-type vortex is expected at the junction where
the cylinder and walls meet. In addition, a shear layer is expected at the trailing edge of the
end-plates. These features break the symmetries seen in the infinite cylinder flow case.

The experience gained with 2D cylinder flow guides us in constructing the mesh in the
plane perpendicular to the cylinder. In this cross section, there are 350 elements where
most of the elements are concentrated around the body and in the wake. Elements are
heavily concentrated in the boundary layers on the surface of the cylinder. There is at least
one element in the boundary layer. The mesh is structured in theZ direction. There is a
clustering of elements near the end-plates in order to resolve the boundary layers shown in
the exploded view in Fig. 13.

FIG. 13. Domain divided into 32 subdomains using the METIS package (see Appendix). The domain decom-
position package tries to minimize the number of cuts while maintaining the same number of elements in each
subdomain. By minimizing the number of cuts, the communication time is minimized. By maintaining the same
number of elements in each subdomain, load balance across the processors is maintained.
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FIG. 14. Plot of the vorticity contours of half the cylinder domain at Reynolds number 500. The incoming
boundary layer and developing wake are visible. Also, a horseshoe vortex structure is present at the junction
between the cylinder and endplate.

A perspective view of the instantaneous vorticity field from the simulation is shown in
Fig. 14. The incoming boundary layer and developing wake is shown. A horseshoe vortex
at the junction between the cylinder and end-plates is also visible. However, the flow is
still developing. The initial model problem consisted of a cylinder bounded by walls. That
model was integrated for 20 convective units before switching to the current model, where
the cylinder is bounded by end-plates. The end-plates simulation has been integrated for five
convective units. A two-dimensional corss section of the boundary layer shown in Fig. 15
at the planesy= 0. The chaotic wake and the large recirculation pattern formed in front of
the cylinder can be seen on this plane.

The contours of zero streamwise (instantaneous) velocity are shown in Fig. 16. The
contour behind the cylinder is an estimate of the steady formation length. The formation
length peaks at the middle of the cylinder. The formation length is decreasing as the wall
is approached. The zero streamwise contrours in the front of the cylinder identify the
recirculation zone as occurs at the junction between the cylinder and the end-plates. The zero
in the streamwise velocity after the cylinder and near the periodic sides is a consequence
of the end-plates. From Fig. 16, the maximum nondimensional formation length behind
the cylinder can be estimated as approximately 4.3. This is significantly larger than the
lengths predicted by experimental and computation results for large to infinity aspect ratio
cylinders shown in Table I. The formation length measured in the experiments of Park
and Gharib [35] shows the trend of increasing formation length with decreasing aspect
ratio. The experiment by Gerrard [14] shows some large variation but it does not state
the aspect ratio of the experimental setup. The simulation usingIVVA predicts a large
instantaneous formation length at the midspan for an aspect ratio of 10, while the length
decreases by 25% by the14-span. The simulation using a Fourier version (in the span) of
NεκT αr has no influence from end-plates and predicts the smallest formation length
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FIG. 15. Two-dimensional slice of the velocity vectors at the centerline,y= 0, for Reynolds number 500.

where the zero of the streamwise velocity is the indicator. One expects overprediction of
the formation length compared to the infinite cylinder case when the aspect ratio between
the walls is only 10. The conclusion from the simulation byIVVA is that the end-
plates tend to increase significantly the formation length behind the cylinder, in agreement
with experimental evidence. Note that while the time acuracy inIVVA is only first-
order due to the penalty term, the above results are independent of time discretization
errors as verified by performing several simulations corresponding to very small time steps.

7. SUMMARY

A vorticity–velocity algorithm has been presented to solve the incompressible Navier–
Stokes equations for complex three-dimensional geometries. The equivalence between
the rotational and Laplacian forms of the vorticity–velocity equations and the canonical

FIG. 16. Instantaneous contours of zero streamwise velocity,u = 0, for Reynolds number 500.
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TABLE I

Formation Length for Flow Past a Cylinder at Reynolds Number 500

Velocity u= 0 Peak ofu′u′

Cases Experiment Computation Experiment Computation

IVVAmidspan AR= 10 4.3
IVVA 1

4
-span AR= 10 3.3

Park & Gharib AR= 15 (1996) 2.5
Park & Gharib AR= 46 (1997) 1.59 1.57
Park & Gharib AR= 144 (1997) 1.59 1.45
Gerrard (1978) 1.70/2.8 1.70
NεκT αr AR=∞ 1.52 1.61

Note. The formation length measured in experiments by: (1) Park and Gharib with aspect ratios (AR) of 15, 46,
and 144, and (2) Gerrard with unknown aspect ratio reported several different lengths; and in simulations by:
(1) IVVA with aspect ratio of 10, and (2) the Fourier version ofNεκT αr based on the velocity–pressure
formulation with infinite aspect ratio.

velocity–pressure equations is stated with emphasis on the boundary constraints and initial
conditions. A penalty method used to impose the vorticity boundary conditions is devel-
oped and validated on an unsteady 2D flow past a cylinder and a steady 3D flow in a pipe
expansion. An analysis of the often-used influence matrix techinque shows that the method
does not converge as1t goes to zero for high-order spatial discretizations. The lack of con-
vergence of the influence matrix technique as the time step decreases is demonstrated by
perturbing an exact 2D Navier–Stokes solution. Unsteady flow past a 3D cylinder with end-
plates at Reynolds number 500 is simulated for first time. The effect of the end-plates on the
formation length is compared with experiments. Parallel timings of the 3D cylinder with end-
plates on a Silicon Graphics Origin2000 parallel system shows fairly good parallel scaling.

The numerical formulation of the vorticity–velocity equations can be solved by expanding
the vorticity and velocity on nonstaggered grids or on staggered grids. Researchers who
have suggested that the numerical formulation should reflect the fact that the vorticity is
equal to the derivatives of the velocity have constructed their finite difference [8, 9, 29, 30,
17, 46, 18, 32, 56, 11, 13] and finite element schemes [16, 15, 19, 39, 40] on staggered
grids. However, thenecessityof expanding vorticity/velocity on different grids still remains
an unresolved theoretical question. In the splitting formulation presented in this paper, both
the vorticity and velocity are expanded and solved on the same grid. No instabilities of any
sort were observed even for very long time integration, and several simulations included
in [51] confirm this result. Implementations at different interpolation orders did not affect
stability, only accuracy. Solving for the vorticity and velocity on nonstaggered grids has
several distinct advantages over staggered grids, including ease of implementation, ease of
extension to high-order, and ease of extension to unstructured grids.

APPENDIX: IMPLEMENTATION

The vorticity–velocity equations are discretized in time using a stiffly stable time in-
tegration scheme developed by Karniadakiset al. [25, 49]. The spatial discritization is
performed using the spectral element formulation [38]. The fast iterative/direct Schur com-
plement method used here was developed independently by Sherwin and Karniadakis [42]
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and Couzy and Deville [7], where the Schur complement is solved iteratively and the
interior matrices are solved directly. There are several reasons to work with the Schur
complement, also known as the nonoverlapping subdomain method of the spectral element
equations: (1) the Schur complement inherits the symmetric positive definiteness of the orig-
inal system—it guarantees good convergence properties for the iterative solver, (2) denser
matrix—vectorization accelerates matrix–vector products, (3) rank is the number of points
on the boundary of subdomains—cost per iteration is cheaper, (4) the condition number of
the Schur complement matrix is bounded by the original matrix [44], the finite element pre-
dictsO(h−1), where the original system isO(h−2) [4]—translates into fewer iterations to
solve systems and (5) the interior solves are decoupled and can be solved independently—a
benefit on parallel architectures because this reduces communication costs. A projection
technique [12] called the successive right-hand side (RHS) accelerator developed by Fischer
accelerates the iterative Schur complement solver.

All partitions are generated by a mesh partition package called METIS2 [26], which uses
a multilevel graph partition algorithm that coarsens and then projects backward toward
the original finer graph. The communication interface for the “direct stiffness summation”
needed in the spectral element formulation is performed by a “Gather-Scatter” library
developed by Tufo and Fischer [53] based on themessage passing interface(MPI). The
output from the parallel algorithm is performed so that each processor writes its own
self-contained data set. The data can be concatenated, together with a “cat” system call
and viewed as a whole, or a subgroup of partitions can be viewed for the economy of
postprocessing.

The parallel performance of the unsteady vorticity–velocity Navier–Stokes algorithm is
validated by timing a production case problem described in Section 6.2, the 3D cylinder
with end-plates at Reynolds number 500. The timings are performed on the Silicon Graphics
Origin2000 parallel system at the National Center for Supercomputing Applications. The
following results represent a typical timing performance without and with the successive
RHS acceleration technique. The saving in wall clock time can be as dramatic as 50%
when using the acceleration technique for unsteady flows. The success of the acceleration
technique can be attributed to the fact that the dynamics from the previous time steps can
be a fairly good approximation to the flow at the current time step. The successive RHS
technique has a speed versus memory trade-off. The memory requirements increase as more
right-hand sides are stored. Eventually, as more RHS are included, there are diminishing
returns in the speedup. The optimal number of RHS is dependent on the unsteady history
of the problem and therefore is problem dependent.

The average time/time step is computed by using the last 20 steps of a 23-step run and
computing the mean usinḡx= (1/n)

∑n
i=1 xi . The error bars on the average time/time step

are computed using the standard deviation,σ =√(1/(n− 1))
∑n

i=1(xi − x̄)2. The nearest
neighbor communication required when performing “direct stiffness assembly” is achieved
by the “gs” package involving both pairwise and tree communication. The cutoff for pair-
wise communication is set to 5, so any nodes shared by five or more processors send/
receive data using a tree algorithm; otherwise a pairwise communication is used to send/re-
ceive data.

The average time/time step scales roughly as 1/P shown in Fig. 17. The successive
RHS technique consistently gives a 50% reduction in computational time. The problem

2 METIS is copyrighted by the regents of the University of Minnesota.



56 TRUJILLO AND KARNIADAKIS

FIG. 17. Average time/time step in seconds, including the standard deviation for a 3D cylinder with end-
plates Navier–Stokes calculation with 2366 elements at sixth-order polynomial running on Silicon Graphics
Origin2000. The standard solver is the iterative/direct Schur complement solver, while the 5 RHS accelerator is
the iterative/direct Schur complement solver with five successive right sides used to accelerate the calculation.

scales nearly linear with processors for small number of processors; see Fig. 17. Note the
self-speedup uses the four-processor run as the reference point, because the test case would
not fit on one processor due to memory constraints.
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